Does system energy "superpose"?

That is, if you have one system of charges with total stored energy W_{1}, and a second charge distribution with $W_{2} \ldots$..if you superpose these charge distributions, is the total energy of the new system simply $W_{1}+W_{2}$?
A. Yes
B. No

ANNOUNCEMENTS

- Homework 5 has a partner problem
- Review problem that you share with each other
- Can share on Piazza (for extra credit!)
- Exam 1 is Wednesday (7-9pm in A149 PSS)

Two charges, $+q$ and $-q$, are a distance r apart. As the charges are slowly moved together, the total field energy

$$
\frac{\varepsilon_{0}}{2} \int E^{2} d \tau
$$

A. increases
B. decreases
C. remains constant

A parallel-plate capacitor has $+Q$ on one plate, $-Q$ on the other. The plates are isolated so the charge Q cannot
change. As the plates are pulled apart, the total electrostatic energy stored in the capacitor:
A. increases
B. decreases
C. remains constant.

CONDUCTORS

THE CONDUCTOR PROBLEM

