Consider a spherical Gaussian surface. What is the $d\mathbf{A}$ in $\int \int \mathbf{E} \cdot d\mathbf{A}$? A. $rd\theta d\phi \hat{r}$ B. $r^2 d\theta d\phi \hat{r}$ C. $r \sin \theta d\theta d\phi \hat{r}$ D. $r^2 \sin \theta d\theta d\phi \hat{r}$ E. Something else *Tutorial follow-up:*

Does the charge σ on the beam line affect the particles being accelerated inside it?

A. Yes B. No C. ???

Think: Why? Or why not?

Tutorial follow-up:

Could the charge σ affect the electronic equipment outside the tunnel?

A. Yes B. No C. ???

Think: Why? Or why not?

We derived that the electric field due to an infinite sheet with charge density σ was as follows:

$$\mathbf{E}(z) = \begin{cases} \frac{\sigma}{2\varepsilon_0} \hat{k} & \text{if } z > 0\\ \frac{-\sigma}{2\varepsilon_0} \hat{k} & \text{if } z < 0 \end{cases}$$

What does that tell you about the difference in the field when we cross the sheet, $\mathbf{E}(+z) - \mathbf{E}(-z)$?

A. it's zero
B. it's
$$\frac{\sigma}{\varepsilon_0}$$

C. it's $-\frac{\sigma}{\varepsilon_0}$
D. it's $+\frac{\sigma}{\varepsilon_0}\hat{k}$
E. it's $-\frac{\sigma}{\varepsilon_0}\hat{k}$

Which of the following two fields has zero curl?

A. Both do.B. Only I is zeroC. Only II is zeroD. Neither is zeroE. ???

What is the curl of the vector field, $\mathbf{v} = c\hat{\phi}$, in the region shown below?

- A. non-zero everywhere
- B. zero at some points, non-zero at others
- C. zero curl everywhere

What is the curl of this vector field, in the red region shown below?

A. non-zero everywhere in the boxB. non-zero at a limited set of pointsC. zero curl everywhere shownD. we need a formula to decide

What is the curl of this vector field, $\mathbf{v} = \frac{c}{s}\hat{\phi}$, in the red region shown below?

A. non-zero everywhere in the boxB. non-zero at a limited set of pointsC. zero curl everywhere shown