Consider a cube of constant charge density centered at the origin.

**True or False**: I can use Gauss' Law to find the electric directly above the center of the cube.

A. True and I can argue how we'd do it.

B. True. I'm sure we can, but I don't see how to just yet.

C. False. I'm pretty sure we can't, but I can't say exactly why.

D. False and I can argue why we can't do it.

## ANNOUNCEMENTS

- First week for clickers is this week
  - I will drop the 3 lowest clicker grades
- Homework 2 (due Wed.)
  - No need to do Problem 5 (will be problem 1 on HW 4)
  - BTW, I will drop your lowest homework grade

What is the value of:

$$\int_{-\infty}^{\infty} x^2 \delta(x-2) dx$$
  
A. 0  
B. 2  
C. 4  
D.  $\infty$   
E. Something else

**Activity:** Compute the following integrals. Note anything special you had to do.

- Row 1-2:  $\int_{-\infty}^{\infty} x e^x \delta(x-1) dx$
- Row 3-4:  $\int_{\infty}^{-\infty} \log(x)\delta(x-2)dx$  Row 5-6:  $\int_{-\infty}^{0} xe^x \delta(x-1)dx$
- Row 6+:  $\int_{-\infty}^{\infty} (x+1)^2 \delta(4x) dx$

Compute:  

$$\int_{-\infty}^{\infty} x^2 \delta(3x + 5) dx$$
A. 25/3  
B. -5/3  
C. 25/27  
D. 25/9  
E. Something else

A point charge (q) is located at position **R**, as shown. What is  $\rho(\mathbf{r})$ , the charge density in all space?

A. 
$$\rho(\mathbf{r}) = q\delta^3(\mathbf{R})$$
  
B.  $\rho(\mathbf{r}) = q\delta^3(\mathbf{r})$   
C.  $\rho(\mathbf{r}) = q\delta^3(\mathbf{R} - \mathbf{r})$   
D.  $\rho(\mathbf{r}) = q\delta^3(\mathbf{r} - \mathbf{R})$   
E. Something else??



What are the units of  $\delta(x)$  if x is measured in meters?

- A.  $\delta(x)$  is dimension less ('no units')
- B. [m]: Unit of length
- C. [m<sup>2</sup>]: Unit of length squared
- D.  $[m^{-1}]$ : 1 / (unit of length)
- E.  $[m^{-2}]$ : 1 / (unit of length squared)

What are the units of  $\delta^3(\mathbf{r})$  if the components of  $\mathbf{r}$  are measured in meters?

A. [m]: Unit of length
B. [m<sup>2</sup>]: Unit of length squared
C. [m<sup>-1</sup>]: 1 / (unit of length)
D. [m<sup>-2</sup>]: 1 / (unit of length squared)
E. None of these.

What is the divergence in the boxed region?

A. Zero B. Not zero C. ???

