
 

We have shown that the Hamiltonian canbe
written of the QHO as

I IIntImari
And we seek eigenvalues andeigenstates for

THE EIES or
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Introducing the operator approach

Instead of seeking a solution directlyto

The Ditty Q We will introduce a new

approach that relies on operators and

commutation relations why
Because it is none

widely applicable to future

QM systems than brute

forcing theBiffyQ



Notice
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when things commute nicely
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Now this approach will work for us even when

things don't commute like CEp it but

we need to pay attention to order

Raising Lowering Ladder Operators

Let's first rewrite IT to have some dimensionless

parts
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Now our goal is to fetor the Hamiltonian
That is the key to this method
like wet Cutin Cu iv we wantto
factor H

We introduce a at Cia and a dagger
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Howdoes this relate back to our original
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Using this form of H we can see

how H acts on at E3 and we

will uncover the energy spectrum
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Lets operate with it on a 7

H ate Hate

Ha ah Awa fwm EH a Hwa

Hale aHIE Awa IE

HIES E IE as IE is assumed

to be an energy
eigenstate

HalE a EIES Hwa IES

Hale E Kw IES
so a IES is an unnormalized

energy eigenstate with eigenvalue

E Kw
What about at

H attET HatIET



Hat atHthwat
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Hat EthwyaHEH
80 attEI is an unnormattedeigenstateof It
with eigenvalue Ethw

Now we can see how these are

raising a lowering or ladder operators

Theenergy rungs the spectrum are

etcsee



We can find the full spectrum by realizing
theres some ground state where

AI Eground 0 no more lower

ladderterminationcondition
States

So with H
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Thus the spectrum is
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we can write some of the results

compactly by assuming In is the

eigenstate

ni i
We will explore position representations later


